这几天工作须要使用storm+kafka,基本场景是应用出现错误,发送日志到kafka的某个topic。storm订阅该topic。然后进行兴许处理。场景很easy,可是在学习过程中。遇到一个奇怪的异常情况:使用KafkaSpout读取topic数据时,没有向ZK写offset数据,致使每次都从头開始读取。
纠结了两天,最终碰巧找到原因:应该使用BaseBasicBolt
作为bolt的父类。而不是BaseRichBolt
。
通过本文记录一下这样的情况,后文中依据上述场景提供几个简单的样例。
由于是初学storm、kafka,基础理论查看,。或查看。
基本订阅
基本场景:订阅kafka的某个topic,然后在读取的消息前加上自己定义的字符串,然后写回到kafka另外一个topic。
从Kafka读取数据的Spout使用storm.kafka.KafkaSpout
。向Kafka写数据的Bolt使用storm.kafka.bolt.KafkaBolt
。
中间进行进行数据处理的Bolt定义为TopicMsgBolt
。闲言少叙。奉上代码:
public class TopicMsgTopology { public static void main(String[] args) throws Exception { // 配置Zookeeper地址 BrokerHosts brokerHosts = new ZkHosts("zk1:2181,zk2:2281,zk3:2381"); // 配置Kafka订阅的Topic。以及zookeeper中数据节点文件夹和名字 SpoutConfig spoutConfig = new SpoutConfig(brokerHosts, "msgTopic1", "/topology/root", "topicMsgTopology"); // 配置KafkaBolt中的kafka.broker.properties Config conf = new Config(); Properties props = new Properties(); // 配置Kafka broker地址 props.put("metadata.broker.list", "dev2_55.wfj-search:9092"); // serializer.class为消息的序列化类 props.put("serializer.class", "kafka.serializer.StringEncoder"); conf.put("kafka.broker.properties", props); // 配置KafkaBolt生成的topic conf.put("topic", "msgTopic2"); spoutConfig.scheme = new SchemeAsMultiScheme(new MessageScheme()); TopologyBuilder builder = new TopologyBuilder(); builder.setSpout("msgKafkaSpout", new KafkaSpout(spoutConfig)); builder.setBolt("msgSentenceBolt", new TopicMsgBolt()).shuffleGrouping("msgKafkaSpout"); builder.setBolt("msgKafkaBolt", new KafkaBolt()).shuffleGrouping("msgSentenceBolt"); if (args.length == 0) { String topologyName = "kafkaTopicTopology"; LocalCluster cluster = new LocalCluster(); cluster.submitTopology(topologyName, conf, builder.createTopology()); Utils.sleep(100000); cluster.killTopology(topologyName); cluster.shutdown(); } else { conf.setNumWorkers(1); StormSubmitter.submitTopology(args[0], conf, builder.createTopology()); } }}
storm.kafka.ZkHosts
构造方法的參数是zookeeper标准配置地址的形式(ZooKeeper环境搭建能够查看),zk1、zk2、zk3在本地配置了host。由于server使用的伪分布式模式,因此几个端口号不是默认的2181。
storm.kafka.SpoutConfig
构造方法第一个參数为上述的storm.kafka.ZkHosts
对象。第二个为待订阅的topic名称,第三个參数zkRoot为写读取topic时的偏移量offset数据的节点(zk node),第四个參数为该节点上的次级节点名(有个地方说这个是spout的id)。
backtype.storm.Config
对象是配置storm的topology(拓扑)所须要的基础配置。
backtype.storm.spout.SchemeAsMultiScheme
的构造方法输入的參数是订阅kafka数据的处理參数,这里的MessageScheme
是自己定义的,代码例如以下:
public class MessageScheme implements Scheme { private static final Logger logger = LoggerFactory.getLogger(MessageScheme.class); @Override public List
MessageScheme
类中getOutputFields方法是KafkaSpout向后发送tuple(storm数据传输的最小结构)的名字,须要与接收数据的Bolt中统一(在这个样例中能够不统一,由于后面直接取第0条数据。可是在wordCount的那个样例中就须要统一了)。
TopicMsgBolt
类是从storm.kafka.KafkaSpout
接收数据的Bolt,对接收到的数据进行处理,然后向后传输给storm.kafka.bolt.KafkaBolt
。
代码例如以下:
public class TopicMsgBolt extends BaseBasicBolt { private static final Logger logger = LoggerFactory.getLogger(TopicMsgBolt.class); @Override public void execute(Tuple input, BasicOutputCollector collector) { String word = (String) input.getValue(0); String out = "Message got is '" + word + "'!"; logger.info("out={}", out); collector.emit(new Values(out)); } @Override public void declareOutputFields(OutputFieldsDeclarer declarer) { declarer.declare(new Fields("message")); }}
此处须要特别注意的是,要使用
backtype.storm.topology.base.BaseBasicBolt
对象作为父类,否则不会在zk记录偏移量offset数据。
须要编写的代码已完毕,接下来就是在搭建好的storm、kafka中进行測试:
# 创建topic./bin/kafka-topics.sh --create --zookeeper zk1:2181,zk2:2281,zk3:2381 --replication-factor 1 --partitions 1 --topic msgTopic1./bin/kafka-topics.sh --create --zookeeper zk1:2181,zk2:2281,zk3:2381 --replication-factor 1 --partitions 1 --topic msgTopic2
接下来须要分别对msgTopic1、msgTopic2启动producer(生产者)与consumer(消费者):
# 对msgTopic1启动producer,用于发送数据./bin/kafka-console-producer.sh --broker-list dev2_55.wfj-search:9092 --topic msgTopic1# 对msgTopic2启动consumer,用于查看发送数据的处理结果./bin/kafka-console-consumer.sh --zookeeper zk1:2181,zk2:2281,zk3:2381 --topic msgTopic2 --from-beginning
然后将打好的jar包上传到storm的nimbus(能够使用远程上传或先上传jar包到nimbus节点所在server,然后本地运行):
# ./bin/storm jar topology TopicMsgTopology.jar cn.howardliu.demo.storm.kafka.topicMsg.TopicMsgTopology TopicMsgTopology
待相应的worker启动好之后,就能够在msgTopic1的producer相应终端输入数据,然后在msgTopic2的consumer相应终端查看输出结果了。
有几点须要注意的:
1. 必须先创建msgTopic1、msgTopic2两个topic。 2. 定义的bolt必须使用BaseBasicBolt作为父类,不能够使用BaseRichBolt。否则无法记录偏移量; 3. zookeeper最好使用至少三个节点的分布式模式或伪分布式模式。否则会出现一些异常情况; 4. 在整个storm下。spout、bolt的id必须唯一。否则会出现异常。5.
TopicMsgBolt
类作为storm.kafka.bolt.KafkaBolt
前的最后一个Bolt。须要将输出数据名称定义为message。否则KafkaBolt无法接收数据。
wordCount
简单的输入输出做完了,来点复杂点儿的场景:从某个topic定于消息,然后依据空格分词,统计单词数量。然后将当前输入的单词数量推送到还有一个topic。
首先规划须要用到的类:
1. 从KafkaSpout接收数据并进行处理的backtype.storm.spout.Scheme
子类; 2. 数据切分bolt:SplitSentenceBolt
; 3. 计数bolt:WordCountBolt
; 4. 报表bolt:ReportBolt
; 5. topology定义:WordCountTopology
; 6. 最后再加一个原样显示订阅数据的bolt:SentenceBolt
。 backtype.storm.spout.Scheme
子类能够使用上面已经定义过的MessageScheme
。此处不再赘述。
SplitSentenceBolt
是对输入数据进行切割。简单的使用String类的split方法,然后将每一个单词命名为“word”,向后传输,代码例如以下:
public class SplitSentenceBolt extends BaseBasicBolt { @Override public void declareOutputFields(OutputFieldsDeclarer outputFieldsDeclarer) { outputFieldsDeclarer.declare(new Fields("word")); } @Override public void execute(Tuple input, BasicOutputCollector collector) { String sentence = input.getStringByField("msg"); String[] words = sentence.split(" "); Arrays.asList(words).forEach(word -> collector.emit(new Values(word))); }}
SentenceBolt
是从KafkaSpout接收数据,然后直接输出。在拓扑图上就是从输入分叉。一个进入SplitSentenceBolt
。一个进入SentenceBolt
。这样的结构能够应用在Lambda架构中。代码例如以下:
public class SentenceBolt extends BaseBasicBolt { private static final Logger logger = LoggerFactory.getLogger(SentenceBolt.class); @Override public void execute(Tuple tuple, BasicOutputCollector basicOutputCollector) { String msg = tuple.getStringByField("msg"); logger.info("get one message is {}", msg); basicOutputCollector.emit(new Values(msg)); } @Override public void declareOutputFields(OutputFieldsDeclarer outputFieldsDeclarer) { outputFieldsDeclarer.declare(new Fields("sentence")); }}
WordCountBolt
是对接收到的单词进行汇总统一,然后将单词“word”及其相应数量“count”向后传输,代码例如以下:
public class WordCountBolt extends BaseBasicBolt { private Mapcounts = null; @Override public void prepare(Map stormConf, TopologyContext context) { this.counts = new ConcurrentHashMap<>(); super.prepare(stormConf, context); } @Override public void declareOutputFields(OutputFieldsDeclarer outputFieldsDeclarer) { outputFieldsDeclarer.declare(new Fields("word", "count")); } @Override public void execute(Tuple input, BasicOutputCollector collector) { String word = input.getStringByField("word"); Long count = this.counts.get(word); if (count == null) { count = 0L; } count++; this.counts.put(word, count); collector.emit(new Values(word, count)); }}
ReportBolt
是对接收到的单词及数量进行整理,拼成json格式,然后继续向后传输。代码例如以下:
public class ReportBolt extends BaseBasicBolt { @Override public void execute(Tuple input, BasicOutputCollector collector) { String word = input.getStringByField("word"); Long count = input.getLongByField("count"); String reportMessage = "{'word': '" + word + "', 'count': '" + count + "'}"; collector.emit(new Values(reportMessage)); } @Override public void declareOutputFields(OutputFieldsDeclarer outputFieldsDeclarer) { outputFieldsDeclarer.declare(new Fields("message")); }}
最后是定义topology(拓扑)WordCountTopology
,代码例如以下:
public class WordCountTopology { private static final String KAFKA_SPOUT_ID = "kafkaSpout"; private static final String SENTENCE_BOLT_ID = "sentenceBolt"; private static final String SPLIT_BOLT_ID = "sentenceSplitBolt"; private static final String WORD_COUNT_BOLT_ID = "sentenceWordCountBolt"; private static final String REPORT_BOLT_ID = "reportBolt"; private static final String KAFKA_BOLT_ID = "kafkabolt"; private static final String CONSUME_TOPIC = "sentenceTopic"; private static final String PRODUCT_TOPIC = "wordCountTopic"; private static final String ZK_ROOT = "/topology/root"; private static final String ZK_ID = "wordCount"; private static final String DEFAULT_TOPOLOGY_NAME = "sentenceWordCountKafka"; public static void main(String[] args) throws Exception { // 配置Zookeeper地址 BrokerHosts brokerHosts = new ZkHosts("zk1:2181,zk2:2281,zk3:2381"); // 配置Kafka订阅的Topic,以及zookeeper中数据节点文件夹和名字 SpoutConfig spoutConfig = new SpoutConfig(brokerHosts, CONSUME_TOPIC, ZK_ROOT, ZK_ID); spoutConfig.scheme = new SchemeAsMultiScheme(new MessageScheme()); TopologyBuilder builder = new TopologyBuilder(); builder.setSpout(KAFKA_SPOUT_ID, new KafkaSpout(spoutConfig)); builder.setBolt(SENTENCE_BOLT_ID, new SentenceBolt()).shuffleGrouping(KAFKA_SPOUT_ID); builder.setBolt(SPLIT_BOLT_ID, new SplitSentenceBolt()).shuffleGrouping(KAFKA_SPOUT_ID); builder.setBolt(WORD_COUNT_BOLT_ID, new WordCountBolt()).fieldsGrouping(SPLIT_BOLT_ID, new Fields("word")); builder.setBolt(REPORT_BOLT_ID, new ReportBolt()).shuffleGrouping(WORD_COUNT_BOLT_ID); builder.setBolt(KAFKA_BOLT_ID, new KafkaBolt()).shuffleGrouping(REPORT_BOLT_ID); Config config = new Config(); Map map = new HashMap<>(); map.put("metadata.broker.list", "dev2_55.wfj-search:9092");// 配置Kafka broker地址 map.put("serializer.class", "kafka.serializer.StringEncoder");// serializer.class为消息的序列化类 config.put("kafka.broker.properties", map);// 配置KafkaBolt中的kafka.broker.properties config.put("topic", PRODUCT_TOPIC);// 配置KafkaBolt生成的topic if (args.length == 0) { LocalCluster cluster = new LocalCluster(); cluster.submitTopology(DEFAULT_TOPOLOGY_NAME, config, builder.createTopology()); Utils.sleep(100000); cluster.killTopology(DEFAULT_TOPOLOGY_NAME); cluster.shutdown(); } else { config.setNumWorkers(1); StormSubmitter.submitTopology(args[0], config, builder.createTopology()); } }}
除了上面提过应该注意的地方。此处还须要注意。
storm.kafka.SpoutConfig
定义的zkRoot与id应该与第一个样例中不同(至少保证id不同,否则两个topology将使用一个节点记录偏移量)。